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The daily life of DSLs

▪ Closely evolve with the domain and the experts’ 
understanding of the domain

▪ Extended, shrunk, customized, replaced with alternatives

▪ Meant for rapid prototyping, evolution
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Variants or subsequent 

versions cannot 

leverage previous 

engineering efforts
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How can we ensure 

interoperability between 

subsequent versions?
v2.4

v2.1
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How can we foster the 

reuse of artifacts between 

similar languages?



Challenges
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• Manage evolution

• Generic tools & 
transformations

• Manage syntactical / 
semantical variation points

• Design families (variants)

• Agile modeling

• Manipulate models in 
different environments

• Reuse transformations & 
tools



A unique solution: language interfaces

• Tools, transformations, environments are tightly coupled 
with the language they were originately defined on

 If the language evolves, associated tools break

 If a variant exists, tools cannot be reused

• An abstraction layer would reduce the coupling

 We realize this abstraction layer with language interfaces
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Language

Implementation
(abstract syntax, concrete syntaxes, semantics, …)

Language

Interface
(meaningful information for a specific purpose)

Language and

Model engineering
(transformations, tools, editors, IDEs, …)
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 Multiple DSLs can match the same 

interface

 Operators defined on an interface can be 

reused for all implementing DSLs



A structural interface: the model type

▪ Interface over the abstract syntax of a language (a metamodel)

▪ Focus on the reuse of tools and transformations

▪ Typing semantics for model manipulation

▪ Supported by a model-oriented type system

▪ Models (i.e. graph of objects) as first-class citizens

 Type group (family) polymorphism

 Structural typing

 Provides model polymorphism and substitutability
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Model typing
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Model typing
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Model typing
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Melange
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A language-based, model-oriented 

programming language



Melange: A Language-Based Model-Oriented Programming Language

▪ A language for defining DSLs

▪ Import DSLs implementation

▪ Handy operators for SLE: inheritance, merge, etc.

▪ Aspect-oriented modeling (e.g. for executable meta-modeling)

▪ Generic transformations

▪ A language for manipulating models

▪ Models as first-class, typed citizens

▪ Model-oriented type system providing model polymorphism

▪ Flexible save and load mechanism

▪ Fully interoperable with the EMF ecosystem

▪ As an external or internal DSL
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Ongoing Experiments

▪ Families of syntactically and semantically diverse languages

▪ Example: FSM

▪ Syntaxes: Simple – hierarchical – with time constraints – etc.

▪ Semantics: Run-to-completion – concurrent – etc.

▪ Generic transformations: flatten – execute – etc.

▪ Thales’ Capella language

▪ xCapella: executable extension of Capella

▪ Managing the interoperability with UML

▪ Executable metamodeling within the ANR GEMOC project
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Future Work

▪ Generic meta-programming

▪ Viewpoints engineering

▪ Model types as explicit required/provided interfaces of 
languages units

▪ Behavioral interfaces (e.g. event structure) for coordinated 
execution of heterogeneous languages
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Wrap-up

Towards Language Interfaces for DSLs Integration 30

• DSL engineering

• High-level operators

• Inheritance, merge, etc.

• Aspect-oriented modeling

• Executable meta-modeling

• Generic tools definition

• Agile modeling

• Manipulate models in different 
environments

• Viewpoints

• Reuse of tools
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http://melange-lang.org

https://github.com/diverse-project/melange
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