
Towards Language Interfaces 

for DSLs Integration

Thomas Degueule – INRIA, France



Aerodynamics 

Authorities

Avionics

Safety

Regulations

Airlines

Propulsion

System

Mechanical

Structure

Environmental

Impact

Navigation
Communications

Human-

Machine 

Interaction

Multiple

Concerns



3

Aerodynamics 

Authoritie

s

Avionics

Safety

Regulations

Airlines

Propulsion

System

Mechanica

l

Structure

Environment

al

Impact

Navigation
Communications

Human-

Machine 

Interaction

Heterogeneous 
Modeling



The daily life of DSLs

▪ Closely evolve with the domain and the experts’ 
understanding of the domain

▪ Extended, shrunk, customized, replaced with alternatives

▪ Meant for rapid prototyping, evolution

Towards Language Interfaces for DSLs Integration 4



Towards Language Interfaces for DSLs Integration 5



Towards Language Interfaces for DSLs Integration 6



Towards Language Interfaces for DSLs Integration 7



Towards Language Interfaces for DSLs Integration 8



Towards Language Interfaces for DSLs Integration 9

Variants or subsequent 

versions cannot 

leverage previous 

engineering efforts



Towards Language Interfaces for DSLs Integration 10

How can we ensure 

interoperability between 

subsequent versions?
v2.4

v2.1



Towards Language Interfaces for DSLs Integration 11

How can we foster the 

reuse of artifacts between 

similar languages?



Challenges

Towards Language Interfaces for DSLs Integration 12

• Manage evolution

• Generic tools & 
transformations

• Manage syntactical / 
semantical variation points

• Design families (variants)

• Agile modeling

• Manipulate models in 
different environments

• Reuse transformations & 
tools



A unique solution: language interfaces

• Tools, transformations, environments are tightly coupled 
with the language they were originately defined on

 If the language evolves, associated tools break

 If a variant exists, tools cannot be reused

• An abstraction layer would reduce the coupling

 We realize this abstraction layer with language interfaces

Towards Language Interfaces for DSLs Integration 13



Language

Implementation
(abstract syntax, concrete syntaxes, semantics, …)

Language

Interface
(meaningful information for a specific purpose)

Language and

Model engineering
(transformations, tools, editors, IDEs, …)

Towards Language Interfaces for DSLs Integration 14

 Multiple DSLs can match the same 

interface

 Operators defined on an interface can be 

reused for all implementing DSLs



A structural interface: the model type

▪ Interface over the abstract syntax of a language (a metamodel)

▪ Focus on the reuse of tools and transformations

▪ Typing semantics for model manipulation

▪ Supported by a model-oriented type system

▪ Models (i.e. graph of objects) as first-class citizens

 Type group (family) polymorphism

 Structural typing

 Provides model polymorphism and substitutability

Towards Language Interfaces for DSLs Integration 15



Model typing

Towards Language Interfaces for DSLs Integration 16



Model typing

Towards Language Interfaces for DSLs Integration 17



Model typing

Towards Language Interfaces for DSLs Integration 18



Melange

Towards Language Interfaces for DSLs Integration 19

A language-based, model-oriented 

programming language



Melange: A Language-Based Model-Oriented Programming Language

▪ A language for defining DSLs

▪ Import DSLs implementation

▪ Handy operators for SLE: inheritance, merge, etc.

▪ Aspect-oriented modeling (e.g. for executable meta-modeling)

▪ Generic transformations

▪ A language for manipulating models

▪ Models as first-class, typed citizens

▪ Model-oriented type system providing model polymorphism

▪ Flexible save and load mechanism

▪ Fully interoperable with the EMF ecosystem

▪ As an external or internal DSL

Towards Language Interfaces for DSLs Integration 20



21



22



23



24



25



26



27



Ongoing Experiments

▪ Families of syntactically and semantically diverse languages

▪ Example: FSM

▪ Syntaxes: Simple – hierarchical – with time constraints – etc.

▪ Semantics: Run-to-completion – concurrent – etc.

▪ Generic transformations: flatten – execute – etc.

▪ Thales’ Capella language

▪ xCapella: executable extension of Capella

▪ Managing the interoperability with UML

▪ Executable metamodeling within the ANR GEMOC project

Towards Language Interfaces for DSLs Integration 28



Future Work

▪ Generic meta-programming

▪ Viewpoints engineering

▪ Model types as explicit required/provided interfaces of 
languages units

▪ Behavioral interfaces (e.g. event structure) for coordinated 
execution of heterogeneous languages

Towards Language Interfaces for DSLs Integration 29



Wrap-up

Towards Language Interfaces for DSLs Integration 30

• DSL engineering

• High-level operators

• Inheritance, merge, etc.

• Aspect-oriented modeling

• Executable meta-modeling

• Generic tools definition

• Agile modeling

• Manipulate models in different 
environments

• Viewpoints

• Reuse of tools



Acknowledgments

▪ Dr. Olivier Barais, University of Rennes, France

▪ Dr. Arnaud Blouin, INSA Rennes, France

▪ Dr. Benoit Combemale, INRIA, France

▪ Prof. Jean-Marc Jezequel, University of Rennes, France

▪ Prof. Robert France, CSU, USA

Towards Language Interfaces for DSLs Integration 31

http://melange-lang.org

https://github.com/diverse-project/melange

http://melange-lang.org/
https://github.com/diverse-project/melange

